Rabu, 14 Desember 2016

INFERENCIAL ENGINE

Inferencial Engine

Inferensi merupakan proses untuk menghasilkan informasi dari fakta yang diketahui atau diasumsikan. Inferensi adalah konklusi logis (logical conclusion) yang merupakan imlikasi berdasarkan informasi yang tersedia. Pada sistem pakar proses inferensi dilakukan olehsuatu modul yang dinamakan mesin inferensi (inference engine). Pada komponen ini terkandung suatu mekanisme pola pikir yang digunakan oleh seorang pakar dalam memecahkan masalah.
Mesin inferensi/Inferencial Engine adalah modul yang merangkaikan basis data untuk menjadi sebuah kesimpulan. Mesin inferensi ini yang akan digunakan untuk menyelesaikan masalah yang diberikan kepada komputer. Data yang diambil dari basis pengetahuan diambil berdasarkan masalah apa yang akan diselesaikan oleh komputer, dan metode yang akan digunakan untuk menyelesaikan masalah itu pun akan berbeda-beda sesuai dengan pokok masalah. Jika masalah yang diberikan tidak dapat diselesaikan maka masalah tersebut akan disimpan ke dalam data.
Hasil pemrosesan yang dilakukan oleh mesin inferensi dari sudut pandang pengguna yang bukan pakar berupa konklusi yang di rekomendasikan oleh sistem pakar atau dapat juga berupa penjelasan jika memang dibutuhkan oleh pengguna. Untuk meningkatkan kemampuan sistem  pakar,  pada  sistem  tersebut  harus  dapat  dilakukan  proses  pembaharuan  pada  basis pengetahuan (knowledge base)  dan penyempurnaan pada mesin inferensi (inference engine) sehingga solusi yang dihasilkan lebih baik daripada sebelumnya [Hartati dan Iswanti dalam Kamsyakawuni].
Ada dua metode inferensi yang digunakan dalam sistem pakar yaitu Forward Chaining (runut maju), dan Backward Chaining (runut mundur) yang akan dibahas pada tulisan selanjutnya.

Sumber:
            Kamsyakawuni Ahmad. 2012. Aplikasi Sistem Pakar Untuk Diagnosa Penyakit Hipertiroid dengan Metode Inferensi fuzzy Mamdani (Tesis), Semarang: Universitas Diponegoro.
Kusrini. 2006. Sistem Pakar: Teori dan Aplikasi. Yogyakarta: Andi.
http://repository.usu.ac.id/bitstream/123456789/23487/4/Chapter%20II.pdf

KNOWLEDGE BASE BAB III : FRAME BASED KNOWLEDGE

Frame Based Knowledge

Model   representasi   bingkai   (frame    based   representation)   adalah    salah    satu representasi  pengetahuan  yang  dipakai  untuk  menyimpan  pengetahuan  dan  fakta  mengenai subyek  tertentu.  Model  ini  didukung  oleh  OKBC  yang  dapat  memfasilitasi  interoperabilitas antar basis pengetahuan.[Fridman, 2000]

Representasi pengetahuan dengan bingkai:
1.      Frame
Sebuah  FRS  mengelola  pengetahuan  dalam  gaya yang berorientasi objek.  “object  oriented”,  dimana fakta akan dihubungkan  dengan  obyek  yang  disebutkan  dalam  fakta dalam sebuah frame.  Frame  adalah  obyek  dimana  fakta saling dikaitkan. Frame membutuhkan nama,  yang kemudian FRS memelihara pemetaan dari nama  obyek  frame. Frame  ini  tercatat  sebagai  entitas  dalam  dunia  konseptual.  Frame tersimpan secara terbatas dalam basis pengetahuan.

2.      Slot
Slot  adalah  pemetaan  dari  frame kepada  himpunan  dari  nilai. Slot  juga  dikenal  dengan  nama.

3.      Classes and Instances
Classes and instancesClass  adalah  himpunan  dari  instance,  dimana  disebut  dengan  instance  dari  class. Sebuah entitas dapat menjadi instance dari banyak class, dimana disebut dengan tipenya, dan sebuah class dapat menjadi type dari banyak class. 

4.      Slot Value Inharitance dan Default
Slot   adalah   pemetaan   dari   sebagian   frame   ke   himpunan   nilai. Tetapi   karena modularitas dan alasan lain FRS mengizinkan satu slot untuk mendeskripsikan himpunan dari pemetaan untuk semua instance dari class.

5.      Facets
 Facets  adalah  keterangan  dari  slot. Facet  memiliki  nilai  yang  sama  dengan  nilai  slot.

Object Based Knowledge
Adalah sebuah sistem yang dirancang untuk membentuk basis pengetahuan dengan bentuk objek dan kelas. Karena system ini bekerja dengan dasar objek dan kelas yang sangat ekspresif, layanan system ini lebih cocok untuk meneyediakan representasi sistem berbasis pengetahuan. Namun sistem ini sulit untuk diterapkan dengan benar.


Sumber:

KNOWLEDGE BASE BAB II : RULE BASED SYSTEM & CASE BASED REASONING

Rule based System Adalah suatu cara untuk menyimpan dan memanipulasi data pengetahuan untuk menyediakan informasi yang berguna. Bentuk ini digunakan apabila kita memiliki sejumlah pengetahuan pakar pada suatu permasalahan tertentu, dan pakar dapat menyelesaikan masalah tersebut secara berurutan. Disamping itu, bentuk ini juga digunakan apabila dibutuhkan penjelasan tentang langkah-langkah pencapaian solusi.

Jikaingin membuat Rule Based System untuk masalah tertentu, maka anda harus memiliki:
  1. Sekumpulan fakta untuk mewakili pekerjaan yang nantinya akan dilakukan.
  2.        Sekumpulan fakta.
  3.       Sebuah kondisi yang menentukan bahwa solusi telah ditemukan atau tidak ada satupun yang exist.
Keuntungan Rule Based System:
  1.              Modularity
  2.          Uniformity
  3.            Naturalness
k    Kerugian Ruled Based System:
  1.      Infinite Chaining
  2.      Possibility of Contraditions
  3.      Inefficiency
  4.      Opacity
  5.      Complex Domains
Case Based Reasoning dilakukan pada penalaran berbasis kasus (cases), basis pengetahuan berisi solusi-solusi yang telah dicapai sebelumnya, kemudian akan diturunkan suatu solusi untuk keadaan yang terjadi sekarang (fakta yang ada). Bentuk ini digunakan apabila user menginginkan untuk mengetahui lebih banyak lagi pada kasus-kasus yang hampir sama (mirip). Selain itu, bentuk ini juga digunakan apabila kita telah memiliki sejumlah situasi atau kasus tertentu dalam basis pengetahuan atau dapat diartikan pengetahuan direpresentasikan dalam bentuk kesimpulan kasus.

Case-Based Reasoning (CBR) terdiri dari atas empat langkah utama, yaitu:
  1. Retrieve : yaitu mengambil kembali permasalahan yang sama. Pada langkah ini dilakukan proses pencarian atau kalkulasi dari kasus-kasus yang memiliki kesamaan.
  2. Reuse : yaitu menggunakan kembali informasi dan pengetahuan dalam kasus tersebut untuk mengatasi masalah baru. Pada langkah ini dicari solusi dari kasus serupa pada kondisi sebelumnya  untuk permasalahan baru.
  3. Revise : yaitu meninjau kembali solusi yang diberikan. Pada langkah ini dicari solusi dari kasus serupa pada kondisi sebelumnya  untuk permasalahan yang terjadi kemudian.
  4. Retain : yaitu mendalami bagian dari pengalaman sebelumnya untuk digunakan dalam pemecahan masalah berikutnya.
Sumber:

KNOWLEDGE BASE. BAB I : PENDAHULUAN

KNOWLEDGE BASE

Basis pengetahuan atau Knowledge base merupakan representasi pengetahuan dari seorang pakar yang diperlukan untuk memahami, memformulasikan dan memecahkan masalah. Terdiri dari dua elemen dasar, yaitu :
1.       Fakta yang berupa informasi tentang situasi permasalahan, teori dari area permasalahan atau informasi tentang objek.
2.       Spesial heuristik yang merupakan informasi tentang cara bagaimana membangkitkan fakta baru dari fakta yang sudah diketahui. Dalam sistem pakar berbasis rule, bagian ini berupa rules.
Knowledge base adalah jantung sebuah sistem pakar. Bagian ini adalah totalitas keahlian pakar yang telah disarikan dan diformat ke dalam external memory komputer. Sampai saat ini terdapat berbagai cara representasi pengetahuan yang telah dikenal, misalnya :

Rule-Based Knowledge
Pengetahuan direpresentasikan dalam suatu bentuk fakta (facts) dan aturan (rules). Bentuk representasi ini terdiri atas premise dan kesimpulan. Pada penalaran berbasis aturan, pengetahuan dipersentasikan dengan menggunakan aturan berbentuk : IF-THEN. Bentuk ini digunakan apabila kita memiliki sejumlah pengetahuan pakar pada suatu permasalahan tertentu, dan pakar dapat menyelesaikan masalah tersebut secara berurutan. Disamping itu, bentuk ini juga digunakan apabila dibutuhkan penjelasan tentang langkah-langkah pencapaian solusi.

Case-Base Reasoning
Pada penalaran berbasis kasus (cases), basis pengetahuan berisi solusi-solusi yang telah dicapai sebelumnya, kemudian akan diturunkan suatu solusi untuk keadaan yang terjadi sekarang (fakta yang ada). Bentuk ini digunakan apabila user menginginkan untuk mengetahui lebih banyak lagi pada kasus-kasus yang hampir sama (mirip). Selain itu, bentuk ini juga digunakan apabila kita telah memiliki sejumlah situasi atau kasus tertentu dalam basis pengetahuan atau dapat diartikan pengetahuan direpresentasikan dalam bentuk kesimpulan kasus.

Frame-Based Knowledge
Pengetahuan direpresentasikan dalam suatu bentuk hirarki atau jaringan frame.

Object-Based Knowledge
Pengetahuan direpresentasikan sebagai jaringan dari objek-objek. Objek adalah elemen data yang terdiri dari data dan metode (proses).



Sumber : http://informatika.web.id/basis-pengetahuan-knowledge-base.htm